Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730626

RESUMEN

This review comprehensively explores the gene BCAR3, detailing its regulation at the gene, mRNA, and protein structure levels, and delineating its multifunctional roles in cellular signaling within cancer contexts. The discussion covers BCAR3's involvement in integrin signaling and its impact on cancer cell migration, its capability to induce anti-estrogen resistance, and its significant functions in cell cycle regulation. Further highlighted is BCAR3's modulation of immune responses within the tumor microenvironment, a novel area of interest that holds potential for innovative cancer therapies. Looking forward, this review outlines essential future research directions focusing on transcription factor binding studies, isoform-specific expression profiling, therapeutic targeting of BCAR3, and its role in immune cell function. Each segment builds towards a holistic understanding of BCAR3's operational mechanisms, presenting a critical evaluation of its therapeutic potential in oncology. This synthesis aims to not only extend current knowledge but also catalyze further research that could pivotally influence the development of targeted cancer treatments.

2.
Mol Biol Rep ; 51(1): 472, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551726

RESUMEN

This comprehensive review elucidates the multifaceted roles of paclitaxel, a key chemotherapeutic agent, in cancer therapy, with a focus on its interactions with gap junctions and related kinases. Paclitaxel, with its complex diterpene structure, mediates its anticancer effects predominantly through specific interactions with ß-tubulin, instigating cell cycle arrest and triggering various cell death pathways, including apoptosis, pyroptosis, ferroptosis, and necroptosis. The paper systematically delineates the chemical attributes and action mechanisms of paclitaxel and its analogs, underscoring their capacity to disrupt microtubule dynamics, thereby leading to mitotic arrest and subsequent cell death induction. It also scrutinizes the pivotal role of gap junctions, composed of connexin proteins, in the modulation of cancer cell behavior and chemoresistance, especially in the milieu of paclitaxel administration. The review articulates how gap junctions can either suppress tumors or contribute to cancer progression, thereby influencing chemotherapy outcomes. Furthermore, the paper provides an in-depth analysis of how paclitaxel modulates gap junction-associated kinases via phosphorylation, influencing the drug's therapeutic efficacy and resistance profiles. By integrating insights from numerous key studies, the review offers a comprehensive understanding of the interplay between paclitaxel, gap junctions, and kinases, shedding light on potential approaches to augment paclitaxel's anti-tumor effectiveness and counteract chemoresistance in cancer treatment.


Asunto(s)
Neoplasias , Paclitaxel , Humanos , Paclitaxel/farmacología , Tubulina (Proteína)/metabolismo , Apoptosis , Muerte Celular , Neoplasias/tratamiento farmacológico , Uniones Comunicantes , Línea Celular Tumoral
3.
Biomedicines ; 12(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38540189

RESUMEN

Rotundifuran (RF), a potent anti-inflammatory and anti-cancer compound, is a natural compound predominantly present in Vitex Rotundifolia. Herein, we investigated the effects of RF on the growth of lung cancer cells. Our findings suggested that RF inhibits cell growth, highlighting its potential as a therapeutic agent for cancer treatment. Interestingly, we observed that cell growth inhibition was not due to apoptosis, as caspases were not activated and DNA fragmentation did not occur. Furthermore, we found that intracellular vacuoles and autophagy were induced, but RF-induced cell death was not affected when autophagy was inhibited. This prompted us to investigate other possible mechanisms underlying cell growth inhibition. Through a cDNA chip analysis, we confirmed changes in the expression of ferroptosis-related genes and observed lipid peroxidation. We further examined the effect of ferroptosis inhibitors and found that they alleviated cell growth inhibition induced by RF. We also observed the involvement of calcium signaling, ROS accumulation, and JNK signaling in the induction of ferroptosis. Our findings suggested that RF is a potent anti-cancer drug and further studies are needed to validate its clinal use.

4.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474160

RESUMEN

This paper delves into the diverse and significant roles of curcumin, a polyphenolic compound from the Curcuma longa plant, in the context of cancer and inflammatory diseases. Distinguished by its unique molecular structure, curcumin exhibits potent biological activities including anti-inflammatory, antioxidant, and potential anticancer effects. The research comprehensively investigates curcumin's molecular interactions with key proteins involved in cancer progression and the inflammatory response, primarily through molecular docking studies. In cancer, curcumin's effectiveness is determined by examining its interaction with pivotal proteins like CDK2, CK2α, GSK3ß, DYRK2, and EGFR, among others. These interactions suggest curcumin's potential role in impeding cancer cell proliferation and survival. Additionally, the paper highlights curcumin's impact on inflammation by examining its influence on proteins such as COX-2, CRP, PDE4, and MD-2, which are central to the inflammatory pathway. In vitro and clinical studies are extensively reviewed, shedding light on curcumin's binding mechanisms, pharmacological impacts, and therapeutic application in various cancers and inflammatory conditions. These studies are pivotal in understanding curcumin's functionality and its potential as a therapeutic agent. Conclusively, this review emphasizes the therapeutic promise of curcumin in treating a wide range of health issues, attributed to its complex chemistry and broad pharmacological properties. The research points towards curcumin's growing importance as a multi-faceted natural compound in the medical and scientific community.


Asunto(s)
Curcumina , Neoplasias , Humanos , Curcumina/farmacología , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Manejo de la Enfermedad
5.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396807

RESUMEN

ATP-sensitive potassium (KATP) channels are found in plasma membranes and mitochondria. These channels are a type of ion channel that is regulated by the intracellular concentration of adenosine triphosphate (ATP) and other nucleotides. In cell membranes, they play a crucial role in linking metabolic activity to electrical activity, especially in tissues like the heart and pancreas. In mitochondria, KATP channels are involved in protecting cells against ischemic damage and regulating mitochondrial function. This review delves into the role of KATP channels in cancer biology, underscoring their critical function. Notably responsive to changes in cellular metabolism, KATP channels link metabolic states to electrical activity, a feature that becomes particularly significant in cancer cells. These cells, characterized by uncontrolled growth, necessitate unique metabolic and signaling pathways, differing fundamentally from normal cells. Our review explores the intricate roles of KATP channels in influencing the metabolic and ionic balance within cancerous cells, detailing their structural and operational mechanisms. We highlight the channels' impact on cancer cell survival, proliferation, and the potential of KATP channels as therapeutic targets in oncology. This includes the challenges in targeting these channels due to their widespread presence in various tissues and the need for personalized treatment strategies. By integrating molecular biology, physiology, and pharmacology perspectives, the review aims to enhance the understanding of cancer as a complex metabolic disease and to open new research and treatment avenues by focusing on KATP channels. This comprehensive approach provides valuable insights into the potential of KATP channels in developing innovative cancer treatments.


Asunto(s)
Adenosina Trifosfato , Neoplasias , Adenosina Trifosfato/metabolismo , Canales de Potasio/metabolismo , Nucleótidos/metabolismo , Mitocondrias/metabolismo , Canales KATP , Neoplasias/tratamiento farmacológico
6.
J Med Food ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37566462

RESUMEN

Regulation of diacylglycerol acyltransferase (DGAT) and pancreatic lipase (PL) activities is important in the treatment of triacylglycerol (TG)-related metabolic diseases. Garcinia mangostana, also known as mangosteen, is a traditional medicine ingredient used in the treatment of inflammation in Southeast Asia. In this study, The ethanolic extract of G. mangostana peel inhibited human recombinant DGAT1 and DGAT2, and PL enzyme activities in vitro. The inhibitory activity of DGAT1 and DGAT2 enzymes of four representative bioactive substances in mangosteen was confirmed. In addition, G. mangostana was confirmed to suppress the serum TG levels in C57 mice by inhibiting the absorption and synthesis of TG in the gastrointestinal tract. Through this study, it was revealed that G. mangostana extract could be useful for the prevention and amelioration of TG-related metabolic diseases such as obesity and fatty liver.

7.
Mol Biol Rep ; 50(10): 8743-8755, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37642760

RESUMEN

Resveratrol, a naturally occurring polyphenolic compound predominantly found in red wine and grapes, has garnered attention for its potential role in regulating carbohydrate digestion, glucose absorption, and metabolism. This review aims to deliver a comprehensive analysis of the molecular mechanisms and therapeutic potential of resveratrol in influencing vital processes in glucose homeostasis. These processes include carbohydrate digestion, glucose absorption, glycogen storage, insulin secretion, glucose metabolism in muscle cells, and triglyceride synthesis in adipocytes.The goal of this review is to offer an in-depth understanding of the multifaceted effects of resveratrol on glucose metabolism. By doing so, it presents valuable insights into its potential applications for preventing and treating metabolic disorders. This comprehensive examination of resveratrol's impact on glucose management will contribute to the growing body of knowledge on this promising natural compound, which may benefit researchers, healthcare professionals, and individuals interested in metabolic disorder prevention and treatment.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Diabetes Mellitus , Humanos , Resveratrol/farmacología , Adipocitos , Glucosa , Diabetes Mellitus/tratamiento farmacológico
8.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240331

RESUMEN

Calcium is an essential intracellular messenger that plays a vital role in controlling a broad range of cellular processes, including apoptosis. This review offers an in-depth analysis of calcium's multifaceted role in apoptosis regulation, focusing on the associated signaling pathways and molecular mechanisms. We will explore calcium's impact on apoptosis through its effects on different cellular compartments, such as the mitochondria and endoplasmic reticulum (ER), and discuss the connection between calcium homeostasis and ER stress. Additionally, we will highlight the interplay between calcium and various proteins, including calpains, calmodulin, and Bcl-2 family members, and the role of calcium in regulating caspase activation and pro-apoptotic factor release. By investigating the complex relationship between calcium and apoptosis, this review aims to deepen our comprehension of the fundamental processes, and pinpointing possible treatment options for illnesses associated with imbalanced cell death is crucial.


Asunto(s)
Calcio , Neoplasias , Humanos , Calcio/metabolismo , Apoptosis , Muerte Celular , Neoplasias/metabolismo , Mitocondrias/metabolismo
9.
Int J Mol Sci ; 24(8)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108220

RESUMEN

The recently defined type of cell death ferroptosis has garnered significant attention as a potential new approach to cancer treatment owing to its more immunogenic nature when compared with apoptosis. Ferroptosis is characterized by the depletion of glutathione (GSH)/glutathione peroxidase-4 (GPx4) and iron-dependent lipid peroxidation. Diplacone (DP), a geranylated flavonoid compound found in Paulownia tomentosa fruit, has been identified to have anti-inflammatory and anti-radical activity. In this study, the potential anticancer activity of DP was explored against A549 human lung cancer cells. It was found that DP induced a form of cytotoxicity distinct from apoptosis, which was accompanied by extensive mitochondrial-derived cytoplasmic vacuoles. DP was also shown to increase mitochondrial Ca2+ influx, reactive oxygen species (ROS) production, and mitochondrial permeability transition (MPT) pore-opening. These changes led to decreases in mitochondrial membrane potential and DP-induced cell death. DP also induced lipid peroxidation and ATF3 expression, which are hallmarks of ferroptosis. The ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 were effective in counteracting the DP-mediated ferroptosis-related features. Our results could contribute to the use of DP as a ferroptosis-inducing agent, enabling studies focusing on the relationship between ferroptosis and the immunogenic cell death of cancer cells.


Asunto(s)
Ferroptosis , Humanos , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Frutas/metabolismo , Muerte Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
10.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38203517

RESUMEN

This review offers an in-depth exploration of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) in metabolic health. It delves into how NADPH affects insulin secretion, influences insulin resistance, and plays a role in ferroptosis. NADPH, a critical cofactor in cellular antioxidant systems and lipid synthesis, plays a central role in maintaining metabolic homeostasis. In adipocytes and skeletal muscle, NADPH influences the pathophysiology of insulin resistance, a hallmark of metabolic disorders such as type 2 diabetes and obesity. The review explores the mechanisms by which NADPH contributes to or mitigates insulin resistance, including its role in lipid and reactive oxygen species (ROS) metabolism. Parallelly, the paper investigates the dual nature of NADPH in the context of pancreatic ß-cell health, particularly in its relation to ferroptosis, an iron-dependent form of programmed cell death. While NADPH's antioxidative properties are crucial for preventing oxidative damage in ß-cells, its involvement in lipid metabolism can potentiate ferroptotic pathways under certain pathological conditions. This complex relationship underscores the delicate balance of NADPH homeostasis in pancreatic health and diabetes pathogenesis. By integrating findings from recent studies, this review aims to illuminate the nuanced roles of NADPH in different tissues and its potential as a therapeutic target. Understanding these dynamics offers vital insights into the development of more effective strategies for managing insulin resistance and preserving pancreatic ß-cell function, thereby advancing the treatment of metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ferroptosis , Resistencia a la Insulina , Humanos , NADP , Antioxidantes , Lípidos
12.
PLoS One ; 14(6): e0218659, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31216334

RESUMEN

We studied the effect of derrone (DR), one of the major compounds of unripe fruits of Cudrania tricuspidata, on cancer cell death. DR inhibited cell growth of various cancer cells, and that was partially associated with apoptosis in A549 cells. DR showed the autophagic features, such as the conversion of LC3-I to LC3-II, the formation of autophagosome and the downregulation of SQSTM1/p62 (p62). The treatment of autophagy inhibitor reversed DR-mediated cell death, suggesting that DR induces autophagic cell death. The increase of cytoplasmic Ca2+ and ROS by DR treatment significantly influences the formation of autophagosomes; however, only ROS scavengers significantly rescued the reduced cell viability. Additional results revealed that treatment of DR induces sustained phosphorylation of ERK and the inhibition of ERK phosphorylation using U0126 (ERK inhibitor) markedly attenuated DR-induced cell death. Overall, these results suggest that DR induces autophagic cell death through intracellular ROS and sustained ERK phosphorylation in A549 cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Flavonoides/farmacología , Moraceae/química , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Muerte Celular Autofágica , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Fosforilación , Extractos Vegetales/química , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Artículo en Inglés | MEDLINE | ID: mdl-29507591

RESUMEN

Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF-α, suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells.

14.
Food Chem Toxicol ; 111: 623-630, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29247770

RESUMEN

Apigenin is a bioactive flavone in several herbs including parsley, thyme, and peppermint. Apigenin possesses anti-cancer and anti-inflammatory properties; however, whether apigenin enhances TRAIL-mediated apoptosis in cancer cells is unknown. In the current study, we found that apigenin enhanced TRAIL-induced apoptosis by promoting caspase activation and death receptor 5 (DR5) expression and a chimeric antibody against DR5 completely blocked the apoptosis. Apigenin also upregulated reactive oxygen species (ROS) generation; however, intriguingly, ROS inhibitors, glutathione (GSH) or N-acetyl-l-cysteine (NAC), moderately increased apigenin/TRAIL-induced apoptosis. Additional results showed that an autophagy inducer, rapamycin, enhanced apigenin/TRAIL-mediated apoptosis by a slight increase of ROS generation. Accordingly, NAC and GSH rather decreased apigenin-induced autophagy formation, suggesting that apigenin-induced ROS generation increased autophagy formation. However, autophagy inhibitors, bafilomycin (BAF) and 3-methyladenine (3-MA), showed different result in apigenin/TRAIL-mediated apoptosis without ROS generation. 3-MA upregulated the apoptosis but remained ROS levels; however, no changes on apoptosis and ROS generation were observed by BAF treatment. Taken together, these findings reveal that apigenin enhances TRAIL-induced apoptosis by activating apoptotic caspases by upregulating DR5 expression regardless of ROS generation, which may be a promising strategy for an adjuvant of TRAIL.


Asunto(s)
Apigenina/farmacología , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
15.
Food Chem Toxicol ; 112: 1-10, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29258953

RESUMEN

Butein is a biologically active flavonoid isolated from the bark of Rhus verniciflua Stokes, which is known to have therapeutic potential against various cancers. Notably, butein inhibits cancer cell growth by inducing G2/M phase arrest and apoptosis. Butein-induced G2/M phase arrest is associated with increased phosphorylation of ataxia telangiectasia mutated (ATM) and Chk1/2, and consequently, with reduced cdc25C levels. In addition, butein-induced apoptosis is mediated through the activation of caspase-3, which is associated with changes in the expression of Bcl-2 and Bax proteins. Intriguingly, butein sensitizes cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via ERK-mediated Sp1 activation, which promotes the transcription of specific death receptor 5. Butein also inhibits the migration and invasion of human cancer cells by suppressing nuclear factor-κB- and extracellular signal-regulated kinases 1/2-mediated expression of matrix metalloproteinase-9 and vascular endothelial growth factor. Additionally, butein downregulates the expression of human telomerase reverse transcriptase and causes a concomitant decrease in telomerase activity. These findings provide the basis for the pharmaceutical development of butein. The aim of this review is to provide an update on the mechanisms underlying the anticancer activity of butein, with a special focus on its effects on different cellular signaling cascades.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Chalconas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Quimioterapia Adyuvante , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Inflamación/prevención & control , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , FN-kappa B/metabolismo , Invasividad Neoplásica/prevención & control , Metástasis de la Neoplasia/prevención & control , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/patología , Ligando Inductor de Apoptosis Relacionado con TNF/fisiología , Telomerasa/metabolismo
16.
Biosci Biotechnol Biochem ; 81(12): 2285-2291, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29090619

RESUMEN

In the course of screening to find a plant material decreasing the activity of triacylglycerol and cholesterol, we identified Tripterygium regelii (TR). The methanol extract of TR leaves (TR-LM) was shown to reduce the intracellular lipid contents consisting of triacylglycerol (TG) and cholesterol in HepG2 cells. TR-LM also downregulated the mRNA and protein expression of the lipogenic genes such as SREBP-1 and its target enzymes. Consequently, TR-LM reduced the TG biosynthesis in HepG2 cells. In addition, TR-LM decreased SREBP2 and its target enzyme HMG-CoA reductase, which is involved in cholesterol synthesis. In this study, we evaluated that TR-LM attenuated cellular lipid contents through the suppression of de novo TG and cholesterol biosynthesis in HepG2 cells. All these taken together, TR-LM could be beneficial in regulating lipid metabolism and useful preventing the hyperlipidemia and its complications, in that liver is a crucial tissue for the secretion of serum lipids.


Asunto(s)
Colesterol/biosíntesis , Extractos Vegetales/farmacología , Triglicéridos/biosíntesis , Tripterygium/química , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Metanol/química , Hojas de la Planta/química
17.
Oncol Lett ; 13(6): 4357-4363, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28588709

RESUMEN

Breast cancer remains the second largest cause of mortality in women with cancer and does not respond well to conventional therapies. Regulator of G-protein signaling 4 (RGS4) is a GTPase-activating protein of the heterotrimeric Gq and Gi proteins. Altered levels of RGS4 are reportedly linked with several human diseases, including cancer. The present study investigated whether overexpression of RGS4 inhibited the growth of human breast cancer cells. Protein expression was investigated by western blot analysis. Cell viability and apoptosis were analyzed by MTT assay and flow cytometric analysis, respectively. Cell cycle analysis was performed using propidium iodide staining in order to examine the anti-proliferative function of increased RGS4 levels. Next, changes in the expression levels of G2/M cell cycle-related proteins were examined. Overexpression of RGS4 led to the upregulation of phosphorylayed (p)-Ser216 cell division cycle (Cdc)25C and p-Tyr15 Cdc2. Importantly, MG132-induced proteasome blockade prevented degradation of RGS4. Suppression of proliferation was associated with G2/M-phase cell cycle arrest. Furthermore, enhanced endogenous RGS4 protein levels significantly inhibited breast cancer cell growth, which was reversed by a pharmacological inhibitor of RGS4. Taken together, these results suggest that overexpression of RGS4 in human breast cancer cells by molecular means may offer a potential therapeutic approach.

18.
Oncol Lett ; 13(6): 4427-4432, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28599444

RESUMEN

Sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables, has been demonstrated to inhibit the growth of various types of cancer cell. The aim of the present study was to investigate whether SFN sensitizes breast cancer cells to paclitaxel-induced apoptosis and to identify the signal pathway through which SFN mediates apoptosis. Combined treatment of breast cancer cells with SFN and paclitaxel resulted in increased activation of apoptotic signaling pathway members, including caspase-3, -8 and -9, and cytochrome c, compared with treatment with SFN or paclitaxel alone. In addition, treatment with SFN and paclitaxel resulted in downregulation of the nuclear factor kappa B signaling pathway, and reduced protein expression of apoptosis regulator Bcl-2 and phosphorylated AKT serine/threonine kinase. Furthermore, SFN-paclitaxel-induced apoptosis was inhibited by overexpression of Bcl-2. The results of the present study suggest that combined treatment with SFN and paclitaxel is a novel therapeutic strategy for the treatment of breast cancer.

19.
Oncol Rep ; 34(1): 139-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25955534

RESUMEN

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Development of novel agents to eradicate liver cancer cells is required for treatment of HCC. Gartanin, a xanthone-type compound isolated from mangosteen, is known to possess potent antioxidant, anti-inflammatory, antifungal and antineoplastic properties. In the present study, we investigated the cytotoxic effect of gartanin on HCC and explored the cell death mechanism. We showed that gartanin induced both the extrinsic and intrinsic apoptotic pathways, which were interconnected by caspase-8, -9 and -3 activation. We also provided convincing evidence that gartanin induced autophagy in various cancer cells, as demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Additionally, gartanin induced the formation of typical autophagosomes and autolysosomes and enhanced the degradation rate of intracellular granule(s), including mitochondria. Notably, gartanin-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5). These findings suggested that gartanin-mediated autophagic response protected against eventual cell death induced by gartanin. Moreover, gartanin treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor (SP600125) inhibited autophagy yet promoted gartanin-induced apoptosis, indicating a key requirement of the JNK-Bcl-2 pathway in the activation of autophagy by gartanin. Taken together, our data suggested that the JNK-Bcl-2 pathway was the critical regulator of gartanin-induced protective autophagy and a potential drug target for chemotherapeutic combination.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , MAP Quinasa Quinasa 4/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Xantonas/administración & dosificación , Antracenos/administración & dosificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Caspasas/biosíntesis , Caspasas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MAP Quinasa Quinasa 4/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos
20.
Planta Med ; 81(3): 228-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25671385

RESUMEN

Six known triterpenoid compounds, 3-oxoolean-12-en-27-oic acid (1), gypsogenic acid (2), 3α-hydroxyolean-12-en-27-oic acid (3), 3ß-hydroxyolean-12-en-27-oic acid (4), aceriphyllic acid A (5), and oleanolic acid (6), were isolated from the roots of Aceriphyllum rossii. Their chemical structures were determined by comparison with available (1)H-NMR and (13)C-NMR data on known compounds. All the isolated compounds were evaluated for inhibitory activity against human diacylglycerol acyltransferases 1 and 2. Most of the isolates exhibited a better inhibitory activity against diacylglycerol acyltransferase 2 (IC50: 11.6-44.2 µM) than against diacylglycerol acyltransferase 1 (IC50: 22.7-119.5 µM). In particular, compounds 1 and 5 showed strong inhibition efficacy towards diacylglycerol acyltransferases 1 and 2, and appeared to act competitively against oleoyl-CoA in vitro. The results also indicated that both compounds reduced newly synthesized triacylglycerol in HuTu80 and HepG2 cells. Oral administration of compound 1 significantly reduced postprandial triacylglycerol in mice following an oral lipid challenge. In conclusion, the current study indicates that compound 1 suppresses both de novo triacylglycerol biosynthesis and resynthesis through the inhibition of diacylglycerol acyltransferase activity, and therefore may be a useful agent for treating diseases associated with a high triacylglycerol level.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/sangre , Inhibidores Enzimáticos/farmacología , Ácido Oleanólico/farmacología , Extractos Vegetales/farmacología , Saxifragaceae/química , Triglicéridos/sangre , Acilcoenzima A/metabolismo , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Células Hep G2 , Humanos , Ratones , Estructura Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Extractos Vegetales/química , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...